An entire gamut of environmental disturbances accost most Asian cities
Sullied cities
asia's race to become more industrial and economically privileged has had its fall outs. The picture is none too pretty: more population, more poverty, more air, water and noise pollution, continuing resource depletion, less ecological diversity, all plague the continent. Some areas have localised problems like the danger of rising sea levels could pose for Pacific islands.
air pollution : Rapid industrial growth has given to Asian cities this legacy of air pollution which could slowly become the singlemost disabling factor for its multitudes. According to Emerging Asia: Changes and Challenges , an Asian Development Bank ( adb ) publication, the air in Asia's cities is among the dirtiest in the world.The levels of ambient particulates - smoke particles and dust, which are a major cause of respiratory diseases - are generally twice the world average and more than five times as high as in industrial countries and Latin America. Throughout Asia, lead emissions from vehicles are also well above safe levels. Ambient levels of sulphur dioxide (SO2) - an important pollutant that traverses across national borders and contributes to acid rain, which in turn damages crops and eats away at synthetic structures - are 50 per cent higher in Asia than in either Africa or Latin America. These levels are, however, still only one-third of the levels prevalent in industrialised countries.
The Asian region has also shown a higher global energy consumption compared to the rest of the world. Whereas the global energy consumption between 1990 and 1993 fell by one per cent, in Asia, the consumption rose by 6.3 per cent. Asian reliance on coal, especially by India and China, and oil has resulted in higher carbon emissions. In fact, CO2 (carbon dioxide) emissions are growing four times as fast as the world average. With industries consuming more than 40 per cent of the energy in Bangladesh, India, China, South Korea, Malaysia, Myanmar and Vietnam, it is clear that industries must use energy efficient technologies to reduce air pollution.
Industrial pollution lets loose a wide range of pollutants which include - SOx (sulphur oxides), NOx (nitrous oxides), total suspended particulates ( tsp ), co (carbon monoxide) apart from CO2 and hydrocarbons like methane. According to a World Bank ( wb ) discussion paper by Carter Brandon and Ramesh Ramankutty, Toward an Environmental Strategy for Asia , approximately 59 per cent of particulates and 39 per cent of SO2 is emitted by industries in Beijing. In Bangkok, the industry emits about 21 per cent of tsp. Apart from these mega cities, there are a much larger number of smaller cities with even more severe air pollution problems, mainly because they were developed as industrial centres due to their proximity to raw materials and fuel sources. Shenyang and Taiyuan in China, Illigan City in the Philippines and the Singrauli region of India are prominent examples.
Such toxic releases can play havoc with the health of the people. The industrial disaster in Bhopal in 1984 is a terrifying example. Yet another threat is occupational hazards. Workers continuously exposed to a polluted environment have experienced a higher incidence of health problems ( See box : Poison in Thailand ).
The industrial sector in Asia has shown an amazing increase in output in recent years. An expanding industrial sector affects the pollution load in two basic ways. The first is to increase the total volume of pollutants in the short and medium terms. The second is to change the pollution intensity of industrial output (the amount of pollution generated per unit of output). In Asia, both the growth and the intensity effects are leading toward heavier pollution loads in the short and medium terms. As there is no comprehensive data on either pollution loads or pollution intensities, the World Bank has developed the Industrial Pollution Projection System ( ipps ) to gauge the trends in industrial pollution in Asia. The ipps uses pollution coefficients from the us manufacturing concerns for 1988 and applies them to industrial output in Asia.
As there is no data on Asia, the ipps has used coefficients developed by US economists which correlate economic growth with production of some 320 toxic pollutants. This can be used to calculate how industrial output increases pollution. However, the accuracy of this method depends upon how closely the technology used in Asia resembles that in the us in 1988. This model can, however, be looked at in two different ways. It is possible that as industries in Asia are less regulated than in usa , pollution loads could be higher. Also, considering that technology used in Asia is newer and more efficient than in usa , the result could be less pollution.
The ipps trends for Indonesia, the Philippines and Thailand are shown for the years 1975 to 1988 ( see graph: Pollution trends ). The six pollutants shown are two indicators each for water pollution (biological oxygen demand ( bod) and suspended solids), air pollution (SOx particulates) and toxic wastes (a composite index of various toxins emitted into the air or water or in solid wastes and heavy metals). Between 1975-88, these three countries had broad-based increases in pollution intensity across all forms of pollution, including 10-fold increases in Thailand, eight-fold increases in the Philippines and four-fold increases in Indonesia. However, an even more important conclusion of the ipps analysis is that the intensity, or unit volume of toxic releases per unit of output is also increasing dramatically in Asia - particularly in East Asia ( See table: Growing toxicity). In comparison, the toxic indicator in Japan fell by two-thirds between the late 1960s and 1987. The relative Gross Domestic Product ( gdp ) rates showed that it increased 2.48 times in Thailand between 1975 and 1988, 1.45 times in the Philippines and 2.16 times in Indonesia respec-tively ( Source: World Bank, World Data, 1990-95 ). This shows that depending on the nature of industrialisation, a doubling of gdp can lead to as much as 10 times increase in the pollution load.
Industrial production over the years has resulted in greater intensity of toxins
COUNTRY | YEAR COVERED | GROWTH FACTOR |
Indonesia | 1976-86 | 5.40 |
Pakistan | 1974-84 | 3.17 |
Malaysia | 1977-87 | 3.05 |
South Korea | 1977-87 | 2.50 |
Thailand | 1976-86 | 2.48 |
China | 1977-87 | 2.12 |
India | 1976-86 | 1.97 |
Bangladesh | 1976-86 | 1.75 |
Sri Lanka | 1977-87 | 1.59 |
Philippines | 1977-87 | 1.12 |
Japan | 1977-87 | 1.11 |
We are a voice to you; you have been a support to us. Together we build journalism that is independent, credible and fearless. You can further help us by making a donation. This will mean a lot for our ability to bring you news, perspectives and analysis from the ground so that we can make change together.
Comments are moderated and will be published only after the site moderator’s approval. Please use a genuine email ID and provide your name. Selected comments may also be used in the ‘Letters’ section of the Down To Earth print edition.