It is clear that fluorosis is not a localised problem. It is spread across states, and across a variety of ecological regions -- the Thar desert, the Gangetic plains, the Deccan plateau. Each of these regions are distinct in terms of rainfall, soil type, groundwater recharge regime, climatic conditions and hydro-geology. How, then, is such omnipresence to be accounted for?
Partly, the answer lies in a pan-Indian natural phenomenon: high fluoride concentration in groundwater.
High fluoride concentration in groundwater is a natural phenomenon in close to 23 countries such as China, Sri Lanka, West Indies, Spain, Holland, Italy and Mexico. Experts claim that a fluoride belt stretches across the north and east of Africa, passing through the Middle East across Pakistan and India, and thence into Southeast Asia and the south of China. According to a Rajiv Gandhi National Drinking Water Mission (rgndwm) report, the bedrock of the Indian peninsula consists of a number of fluoride-bearing minerals: fluorite, topaz, apatite; and rockphosphate, phosphatic nodules and phosphorite (all with high fluoride concentrations). When the bedrock weathers -- a natural chemical process in which the rock slowly crumbles to form soils -- the fluoride leaches into the water and the soil.
Leaching depends on various factors: the chemical composition of water; the presence and accessibility of fluoride minerals to water; and the time of contact between the source mineral and water. For instance, deep alluvial aquifers contain great quantities of water that accumulate over geological time, and so could contain water with high fluoride concentration at the very bottom. Hard rock aquifers contain water in cracks, but the very proximity to rock might make this water fluoride-rich, especially if it is extracted faster than recharged.
Climatic conditions also play a major role in deciding the extent of fluoride in groundwater. For instance a 2002 paper -- Fluoride in shallow aquifers in Rajgarh tehsil of Churu district, Rajathsan - an arid environment -- published in Current Science points out that "the arid climate with high evaporation and insignificant natural recharge might have accelerated the strengthening of fluoride concentration in the groundwater of this (Churu district) area".
The presence of high concentrations of fluoride in groundwater begs a further question: the Indian penisular bedrock has always been the same; then how is it that this problem has surfaced only in the last three decades or so?
"The presence of fluoride in groundwater and soil is also human-made. We have over-extracted groundwater and have tapped aquifers with high fluoride concentration," says S K Gupta, senior scientist with the Ahmedabad-based Physical Research Laboratory. Points out Kaushikbhai of Utthan, an Ahmedabad-based non-governmental organisation (ngo): "Over-exploitation of groundwater in the last 20 years is the chief reason for the spread of fluorosis in Gujarat. With the coming of diesel pumpsets, things have changed. Farmers have started to dig deeper into the earth's crust and are literally extracting poison."
"Thirty years back we used to drink water from open wells and talab, and there was no problem of fluoride. But in the last two decades, we have gone deeper and deeper into the ground and are extracting water with the help of pumpsets," says Devaji Thakur of Thakrasan village in Patan district of Gujarat. He says his state is a classic case of falling water tables and increasing incidence of fluoride in water. Pre-1935, the groundwater was available at the depth of 5-10 metre (m) and could be manually lifted. Post-1955, groundwater levels started to decline rapidly, between one and three metres per year. At present in some districts such as Mehsana, the water table is as low as 365 m below ground level. "Over-extraction of groundwater cannot lead to introduction of fluoride in groundwater, but leads to tapping of high fluoride aquifer," says Gupta.
Gupta's statement takes on a horrific hue once it is realised that 85 per cent of rural water supply in India comes from below the ground, and that cities, too, are digging deeper into the earth's crust to slake their thirst. What further complicates this picture is a peculiar interplay of official apathy and people's needs. As Rajeev Katpaliya, an Ahmedabad-based planner puts it, "It is a question of survival for people. They need water and if government does not supply it, they will go deeper." "People are extracting water from the depth of 300 m. What can the state do?" questions V C Trivedi, collector of Amreli district in Gujarat.