Science & Technology

Scientists uncover mechanism of joint cartilage formation

Researchers at the Indian Institute of Technology, Kanpur have made headway towards finding a molecule that can help treat osteoarthritis

 
By Ratneshwar Thakur
Last Updated: Tuesday 13 February 2018 | 06:33:18 AM
Despite the importance of joint/articular cartilage in normal physiology and disease conditions, very little is known about how it develops and is maintained permanently as cartilage throughout life. Credit: Aron Carls/Flickr
Despite the importance of joint/articular cartilage in normal physiology and disease conditions, very little is known about how it develops and is maintained permanently as cartilage throughout life. Credit: Aron Carls/Flickr Despite the importance of joint/articular cartilage in normal physiology and disease conditions, very little is known about how it develops and is maintained permanently as cartilage throughout life. Credit: Aron Carls/Flickr

Joint pain due to osteoarthritisis an emerging health problem. Researchers are engaged in developing new strategies for osteoarthritis treatment based on regenerative medicine, tissue engineering and gene therapy. Now Indian researchers have made headway towards finding a molecule that can stop degeneration as well as promote regeneration of articular cartilage.

Researchers at the Indian Institute of Technology, Kanpur have reported role of two novel molecules - NFIA and GATA3 – in development of joint cartilage during embryo growth. They have observed in chicken and mouse studies that both these molecules prevent cartilage degeneration. In addition, GATA3 can also promote formation of articular cartilage, which covers ends of joints. Deterioration of articular cartilage in joints causes osteoarthritis. The results of the study have been published in the journal, Development.

“We have identified and characterised roles of two novel articular cartilage factors - NFIA that prevents degeneration of cartilage and maintains it permanently throughout life; and GATA3 that is not only necessary to prevent cartilage degeneration but also can induce articular cartilage, in collaboration with other factors,” explained Amitabha Bandyopadhyay, who led the research team.

Previous studies suggest that genes involved in tissue repair and regeneration are largely similar to the ones associated with tissue building during embryo development. In an earlier study, this group had reported a collection of genes that are turned on exclusively during embryonic articular cartilage development.

In this study, the authors also observed interesting phenomena where molecular manipulation leading to perturbance of articular cartilage also led to a defect in transient cartilage formation. Pratik Singh, co-author in this study says, “This study provides novel insight into the cross-talk between articular cartilage and transient cartilage formation which is essential for successful development of limbskeleton. By studying these molecules further, we hope to learn to make stable articular cartilage in vitro, currently a major challenge in the field.”

“The work provides important pieces in the puzzle of how joints are initially formed in the body,” commented Terence D. Capellini of Human Evolutionary Biology department of Harvard University, who was not connected with the study.

“We know that joint cartilage is different from other cartilage. It has a different tensile strength and unlike skeletal cartilage, it is resistant to ossification. This new work is going to be the first step in identifying how these differences are established at molecular level,” said Raj Ladher from National Centre for Biological Sciences, Bangalore. He is not a part of this study.

“Despite the importance of joint/articular cartilage in normal physiology and disease conditions, very little is known about how it develops and is maintained permanently as cartilage throughout life. This limited understanding is perhaps why there is not effective strategy to treat osteoarthritis,” said Bandyopadhyay.

The research team included Pratik Singh, U S Yadav, K. Azad and Amitabha Bandyopadhyay (IIT- Kanpur), Pooja Goswami (KIIT University, Bhubaneswar), Veena Kinare (Sophia College for Women, Mumbai). The work was supported by grants from the Department of Biotechnology and Science and Engineering Research Board of Department Science and Technology.

(India Science Wire)

@ratnesh_thakur

Subscribe to Weekly Newsletter :

Related Story:

Joint relief

Osteoporosis connection

Remedy for osteoporosis

We are a voice to you; you have been a support to us. Together we build journalism that is independent, credible and fearless. You can further help us by making a donation. This will mean a lot for our ability to bring you news, perspectives and analysis from the ground so that we can make change together.

Comments are moderated and will be published only after the site moderator’s approval. Please use a genuine email ID and provide your name. Selected comments may also be used in the ‘Letters’ section of the Down To Earth print edition.